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Abstract

The stabilizer formalism for quantum error-correcting codes has been, without
doubt, the most successful at producing examples of quantum codes with strong error-
correcting properties. In this paper, we discuss strong automorphism groups of sta-
bilizer codes, beginning with the analogous notion from the theory of classical codes.
Two weakenings of this concept, the weak automorphism group and Clifford-twisted
automorphism group, are also discussed, along with many examples highlighting the
possible relationships between the types of “automorphism groups”. In particular, we
construct an example of a [[10, 0, 4]] stabilizer code showing how the Clifford-twisted
automorphism groups might be connected to the Mathieu groups. Finally, nonexis-
tence results are proved regarding stabilizer codes with highly transitive strong and
weak automorphism groups, suggesting a potential inverse relationship between the
error-correcting properties of a quantum code and the transitivity of those automor-
phism groups.
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1 INTRODUCTION

1 Introduction

Although quantum computers are thought to be significantly more efficient than classical
computers (e.g. Shor’s algorithm for integer factorization), they are also inherently more sus-
ceptible to noise and breakdown processes. The construction of a quantum error-correcting
code (QECC) in [10] demonstrated how protection against a single-qubit error was possible,
which was a milestone towards the practical realization of quantum computers. However,
the problem of finding “good” QECCs is still difficult, and their theory is still in an early
stage of development, compared to, say, the theory of classical error-correcting codes. We
were interested in this very general question of finding “good” QECCs, with a particular
emphasis on investigating how “symmetric” a QECC could be. We were also motivated by
the recent paper of Harvey and Moore [7], in which possible connections are found among
QECCs, conformal field theories, and the Mathieu moonshine phenomena. Similar theories
for classical codes revolve around finding their automorphism groups, which explains the
motivations behind some of the definitions and results in Section 2 and Section 3.

This paper is structured as follows: in the remainder of this section we will present a brief
background of quantum error correction and stabilizer codes, following [5] and Chapter 10 of
[8]. We will put more emphasis on the mathematical structures and skip much of the physical
intuition behind QECCs. In Section 2 we will introduce three notions of automorphism
groups of quantum codes, which we call strong, weak, and Clifford-twisted. We prove some
basic results regarding these different types of automorphism groups. The bulk of this section,
however, will be devoted to giving examples of all three types of automorphism groups of
small QECCs, along with explaining how they might be calculated by hand. Particularly
interesting is the example in Section 2.2.6, which gives evidence of a possible connection
between Clifford-twisted automorphism groups of stabilizer codes and the Mathieu groups.
In Section 3 we will show in certain cases that the strong and weak automorphism group of
“good” stabilizer codes cannot be highly transitive, which suggests that the Clifford-twisted
automorphism groups might have the most interesting properties. Along the way, we mention
some problems that we found interesting, but did not have time to think about.
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1.1 Prelude: Classical Error Correction 1 INTRODUCTION

1.1 Prelude: Classical Error Correction

We give a very brief overview of classical error correction to serve as motivation for the
constructions of quantum error correction theory, which will be presented in Section 1.2.
First, recall that in classical computing, the basic unit of computation is the bit, which takes
a state of either 0 or 1; i.e. an element of F2. Thus an n-bit state is just an element of Fn2 .

The fundamental idea of classical error correction is repetition. In particular, if we want
to transmit k bits of information, we would repeat that information in such a way that it
would be “hard” to confuse slight moderations of the encoded information with an encoding
of a different k bits of information. For instance, if we wanted to send the bits 0 and 1
through a somewhat noisy channel, we could instead send the 3-bit sequences 000 and 111,
so that even if there is a 1-bit error, we could use a “majority rules” scheme to correct the
error. As an explicit example, if we received 010, which is not a possible codeword, we could
conclude with high probability that 000 was the intended message. In this manner, we are
essentially embedding one bit into three by the identification of F1

2 with the 1-dimensional
subspace {000, 111} in F3

2, so we call such a scheme a linear code. We will soon see how the
same ideas apply in the quantum world, although there are some caveats.

1.2 Quantum Error Correction

Definition 1.1. A qubit is the basic unit of quantum computation. It is represented as the
complex vector space C2 with basis vectors 0 and 1, so the state of a qubit is given by a
nonzero linear combination (superposition) a0 + b1.

Some notational remarks are in order. First, we will write vectors/states in boldface,
instead of the bra-ket convention popular in physics. Second, we will not bother with nor-
malizing the state a0 + b1 of a qubit so that |a|2 + |b|2 = 1, as that does not affect our
discussion.

Definition 1.2. A space of n qubits is represented as the tensor product (C2)⊗n = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸
n times

,

where tensor products are taken over C. A basis for this space is given by

{0 . . .0,0 . . .01, . . . ,1 . . .1},

the 2n binary vectors of length n.

We will usually refer to such a space of n qubits as C2n .

The central idea of quantum error correction is to identify a k-qubit space with some
2k-dimensional linear subspace, called the codespace, of an n-qubit space, called the ambient
space, where n > k. We will call states in the ambient 2n-dimensional space physical, and
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1.2 Quantum Error Correction 1 INTRODUCTION

states in the 2k-dimensional codespace logical. For example, if we encode a one-qubit space
into three qubits by the map 0 7→ 000,1 7→ 111, we may refer to the physical state 000 as
“logical 0”, denoted 0L.

In this formalism, errors will just be linear operators acting on the codespace. To have
error-correcting properties, this codespace should be redundant in some sense, but there is
an added difficulty in that we are not allowed to create repetitions of quantum states, as we
might do in classical computing. This is the no-cloning theorem, as discussed in Theorem
1 of [5]. Therefore, this codespace should consist of highly entangled states—“redundancy
without repetition”. Moreover, in general physical situations, one may encounter errors
randomly affecting a single qubit, or a small number of qubits, of the ambient space. A good
code allows such errors to be corrected.

We now state the quantum error-correction conditions as a “black box”. A full derivation
can be found in Section 10.3 of [8].

Theorem 1.3. Let C ⊂ C2n be a quantum code, and let P be the orthogonal projection onto
C. Then C can correct a set of errors E = {Ei} if and only if there is a complex Hermitian
matrix (αij) such that

PE∗iEjP = αijP, (1)

where Ei, Ej run over all operators in E, and ∗ is the conjugate transpose.

Using Theorem 1.3, one can show that if a code C corrects a set of errors {Ei}, then it
also corrects any linear combination of the Ei. This is an extremely powerful observation,
because instead of possibly having to correct a continuum of errors, it now suffices to focus
only on correcting a discrete set of error operations that span the full set of errors we want
to correct. Because of this observation, it makes sense to introduce the Pauli matrices:

Definition 1.4. The four Pauli matrices are defined as follows:

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, Y = iXZ =

[
0 −i
i 0

]
. (2)

We call X the bit flip operator, since it sends 0 to 1 and vice versa. Similarly, we call
Z the phase flip operator, since it sends 0 to itself, but 1 to −1. Finally, Y is a combined
bit-phase operator, with an extra factor of i thrown in to make the mathematics easier. The
Pauli matrices act on the one-qubit space C2, but n-fold tensor products of them act on an
n-qubit space in the natural way. For example, the tensor product X ⊗ Z ⊗ I acts on C23

by sending 000 to 100, 111 to −011, etc. In the rest of this paper, we will simply write
tensor products of Pauli matrices as concatenations, so that the above X ⊗ Z ⊗ I operator
is simply XZI.

The Pauli matrices have remarkable properties that will be fully exploited in the rest of
the paper. First, they are all both unitary and Hermitian, and they form a basis of the 2-by-2
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1.3 The Pauli Group and Stabilizer Codes 1 INTRODUCTION

complex matrices. So by the discussion after Theorem 1.3, if we wanted to, for instance,
correct arbitrary errors occurring on the first qubit of a three-qubit system, we simply need
to correct the errors XII, ZII, and Y II (along with III, which is automatic). Second,
all of the Pauli matrices square to the identity, and they all commute or anticommute. In
particular, two Pauli matrices anticommute if and only if they are different nonidentity
matrices. This implies that the Pauli matrices form a projective representation of the four-
group Z2 × Z2, which is why they are chosen as our basis of the 2-by-2 complex matrices.
Since complex scalars, in general, do not concern us, the fact that the Pauli matrices act like
the elements of Z2 × Z2 is of great utility.

1.3 The Pauli Group and Stabilizer Codes

Now, although the quantum error-correction condition 1 is easy to verify for any particular
code and set of errors, it is difficult to actually construct a code correcting a given set of error
operations, particularly if that set is large. Indeed, we are usually interested in correcting
sets of errors such as “all one-qubit errors,” which necessitates correcting an error set of size
3n if the ambient space is an n-qubit space (we need to correct an X, Z, and Y error at each
physical qubit). The stabilizer formalism introduced by Gottesman [4] provides a convenient
workaround to this problem.

Definition 1.5. The one-qubit Pauli group, denoted G1, is the group of matrices generated
by X, Y , and Z. This is a group of order 16:

G1 = {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}.

Note that the elements of G1 are just Pauli matrices multiplied by some phase factor,
which is a fourth root of unity. All elements in G1 square to plus or minus the identity, and all
elements commute or anticommute. This means that G1 is “almost” an elementary abelian
2-group: its commutator subgroup is 〈−I〉, and G1/[G1, G1] is indeed an elementary abelian
2-group of order 22n+1. It will also be useful to speak of G1 mod its center Z(G1) = 〈iI〉, so
that we can consider elements without worrying about scalar multiples. We denote G1/Z(G1)
by P1.

It is natural to generalize the Pauli group to n-fold tensor products:

Definition 1.6. The n-qubit Pauli group, denoted Gn, is the group of matrices generated by
n-fold tensor products of the Pauli matrices. This is a group of order 4n+1, since there are
4n possible tensor products, along with 4 possible phases (the fourth roots of unity).

Again, [Gn, Gn] = 〈−I〉, Gn/[Gn, Gn] is an elementary abelian 2-group, and Z(Gn) = 〈iI〉.
We denote Gn/Z(Gn) by Pn.
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1.3 The Pauli Group and Stabilizer Codes 1 INTRODUCTION

Before moving on to stabilizer codes, we mention an extremely useful way of writing
elements of Pn, known as the check matrix. We see that an element s ∈ Pn can uniquely be
written as

Xa1Zb1 ⊗Xa2Zb2 ⊗ . . .⊗XanZbn ,

where the ai, bi are 0 or 1. Therefore we represent s as

(a|b) =
[
a1 a2 . . . an b1 b2 . . . bn

]
, (3)

which can be thought of as a vector in F2n
2 . For example, the element IXY Z is represented

as [
0 1 1 0 0 0 1 1

]
.

The utility of this representation becomes clear when we define a symplectic bilinear form
over F2n

2 given by

〈(a|b), (c|d)〉 = a · d+ b · c, (4)

where · is the usual dot product in Fn2 . Then it is straightforward to check that if s, s′ ∈ Pn
have check matrix representations (a|b), (a′|b′) respectively, s and s′ commute if and only if
〈(a|b), (a′|b′)〉 = 0. Since Pn is simply Gn modded out by its center, the same is true for any
lifts of s, s′ to elements in Gn. The check matrix representation gives us a compact way of
writing set of elements in Gn or Pn, which will be useful later on.

We are now ready to define stabilizer codes. The key is to consider the action of Gn on
C2n , and consider the fixed points of a subgroup of Gn.

Definition 1.7. Let S be an abelian subgroup of Gn not containing −I. Then

C(S) = {v ∈ C2n : sv = v for all s ∈ S} (5)

is the stabilizer code corresponding to S. We call S the stabilizing subgroup corresponding
to C(S).

It is easy to check that C(S) is a subspace of the ambient space.
It is important to make a few remarks regarding this definition. First, C(S) must contain

all vectors in C2n that are fixed by everything in S. In particular, for a code C ′ to be called
a stabilizer code, there must be some abelian subgroup S of Gn, not containing −I, such
that C ′ = C(S). It is not enough for C ′ ⊂ C(S). Second, we do not want S to contain −I.
Otherwise, if −I ∈ S, then for any v ∈ C(S), we have v = −Iv ⇒ v = 0, so that C(S) is
trivial. Similarly, we require S to be abelian: if s, s′ ∈ S do not commute, then they must
anticommute, so that for any v ∈ C(S), we have v = (ss′)v = (−s′s)v = −(s′sv) = −v ⇒
v = 0. Note that because elements in Gn either square to I or −I, these two conditions
imply that S is an elementary abelian 2-group. Also, elements in S may only have a scalar
factor of plus or minus 1, lest they square to −I.

7



1.3 The Pauli Group and Stabilizer Codes 1 INTRODUCTION

Given the construction of stabilizer codes, we would like to somehow connect a stabilizing
subgroup S ⊂ Gn with the dimension of C(S), as well as with the errors that C(S) can
correct. Let us first answer the former question. First, note that S can have size at most
2n. To see why, suppose S has m independent generators (so |S| = 2m), which we write in
the check matrix format. We may think of S as an m-dimensional subspace of the F2-vector
space F2n

2 . Because these generators all commute, S is self-orthogonal with respect to the
bilinear form in 4; that is, S ⊆ S⊥. But dimS + dimS⊥ = 2n, so that m = dimS ≤ n.

With m ≤ n in mind, it now makes sense to state the following proposition:

Proposition 1.8. Let C be the stabilizer code corresponding to a stabilizing subgroup S ⊂
Gn. If S has m independent generators, or equivalently |S| = 2m, then C has dimension
2n−m; that is, it encodes k := n−m logical qubits.

Proof. We claim that the orthogonal projection onto C is given by P = 1
|S|
∑

s∈S s. We must
check that

1. P = P ∗,

2. Pv = v for all v ∈ C,

3. P 2 = P .

For (1), we notice that the elements of S are, up to sign, tensor products of the Pauli
matrices, which are all Hermitian. Hence any s ∈ S is Hermitian, so P is as well. For (2),
we calculate Pv = 1

|S|
∑

s∈S sv = 1
|S|
∑

s∈S v = v, since v ∈ C implies sv = v for all s ∈ S.

For (3), we have

P 2 =

(
1

|S|
∑
s∈S

s

)(
1

|S|
∑
t∈S

t

)
=

1

|S|
∑
s∈S

(
1

|S|
∑
t∈S

st

)
=

1

|S|
∑
s∈S

P = P,

since summing over all st ∈ S, for s fixed, is the same as summing over all t ∈ S.
So because P is an orthogonal projection onto C, we have dimC = rk P = trP . Notice

that X, Y , and Z are traceless. Using this and the fact that −I 6∈ S, we see that the only
term in

∑
s∈S s that has nonzero trace is the identity. Hence trP = 1

|S|(trI) = 2n

|S| = 2n−m.

In this situation, we call C an [[n, k]] code, where the double brackets are meant to
distinguish the quantum code C from classical codes. From now on, S will always be assumed
to an abelian subgroup of Gn not containing −I, and we will just write C for C(S) if there
is no ambiguity in the stabilizing subgroup S.

We now discuss the error-correcting properties of C. First, we need to define a slight
abuse of notation:
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1.3 The Pauli Group and Stabilizer Codes 1 INTRODUCTION

Definition 1.9. Let N(S) be the normalizer of S in Gn. We say that an element p ∈ Pn is
in N(S)− S if there is some lift g ∈ Gn of p in N(S)− S.

The idea behind this definition is that we can and should disregard the scalar phase of
any element of Gn, since we know that if C corrects some error E, it corrects any scalar
multiple of E. Notice that N(S) is equal to the centralizer of S, since two elements of Gn

either commute or anticommute, and −I 6∈ S.
Along with this definition, we must reinterpret the quantum error-correction conditions,

Theorem 1.3, in the language of stabilizer codes.

Theorem 1.10. Let C be the stabilizer code corresponding to a subgroup S. If {Ei} is a
set of error operators in Gn such that E∗iEj 6∈ N(S) − S for all i and j, then the {Ei} are
correctable.

Proof. See Theorem 10.8, [8].

The criterion in Theorem 1.10 is much easier to use than that in Theorem 1.3. Instead of
having to construct the projection matrix onto our code and do various matrix calculations,
the error-correcting properties of a stabilizer code can be computed only using knowledge of
Gn. Because of this, we introduce a few more definitions regarding elements of Gn and Pn:

Definition 1.11. The weight of an element p ∈ Pn is the number of non-identity tensor
factors in p.

For instance, the element XZIIZ ∈ P5 has weight 3, since it has three non-identity
tensor factors.

Definition 1.12. Let C be an [[n, k]] stabilizer code corresponding to a subgroup S ⊂ Gn,
where k ≥ 1. Then the distance d of C is defined as

d = min{weight(p) : p ∈ Pn, p ∈ N(S)− S}. (6)

Recall that we write p ∈ N(S)− S as in the sense of Definition 1.9. In this case, we call C
a [[n, k, d]] code.

Remark 1.13. In the degenerate case k = 0, where C is 1-dimensional (i.e. a single state),
N(S)− S is empty, so the above definition does not make sense. We follow the convention
of [3] and say that the distance is

d = min{weight(p) : p ∈ S, p 6= I}. (7)

From these definitions, we see that the product of any two weight w operators has weight
at most 2w, and that the conjugate transpose does not change the weight of an operator.
Then it follows from Theorem 1.10 that any code with distance greater than 2w can correct
errors affecting any w qubits.
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2 AUTOMORPHISM GROUPS OF CODES

Example 1.14. Consider a subgroup S ⊂ G5 generated by

{XZZXI, IXZZX,XIXZZ,ZXIXZ}.

These elements all pairwise commute, and S does not contain −I, so the stabilizer code C
corresponding to S encodes 5 − 4 = 1 logical qubit. Moreover, one can directly verify that
the distance of S is 3—for instance, XIZIX ∈ N(S)− S, but there are no elements p ∈ Pn
of lesser weight in N(S) − S. This shows that C can correct any error affecting one qubit,
since 3 > 2 · 1.

Using the projection matrix of a stabilizer code as in Proposition 1.8, we can find a basis
for C:

0L = 00000 + 10010 + 01001 + 10100

+ 01010− 11011− 00110− 11000

− 11101− 00011− 11110− 01111

− 10001− 01100− 10111 + 00101

1L = (XXXXX)0L

= 11111 + 01101 + 10110 + 01011

+ 10101− 00100− 11001− 00111

− 00010− 11100− 00001− 10000

− 01110− 10011− 01000 + 11010.

Remark 1.15. The aforementioned stabilizer code is the smallest able to correct one error
on any qubit, in terms of the number n of physical qubits.

More examples of small stabilizer codes, as well as more details about their theory, can
be found in Section 10.5 of [8]. Many more examples of stabilizer codes, including codes with
larger parameters [[n, k, d]], can be found at [6]. We will reference those tables of quantum
codes in the below sections.

2 Automorphism Groups of Codes

2.1 Definitions and Basic Results

Just like in the theory of classical codes, we can define the automorphism group of a QECC:

Definition 2.1. Let C be a quantum code. There is a natural action of Sn on the n-qubit
ambient space C2n. We define the strong automorphism group of C as

Autstrong(C) = {σ ∈ Sn : σ(C) = C}. (8)
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2.1 Definitions and Basic Results 2 AUTOMORPHISM GROUPS OF CODES

We are particularly interested in the case where C is a stabilizer code with stabilizing
subgroup S. Indeed, in this case we may also consider the action of Sn on Gn given by
permuting tensor factors. This action is equivalently given by σ(g) = MσgM

−1
σ , where

g ∈ Gn and M−1
σ is the permutation matrix associated to σ in the natural basis of C2n .

Then the above condition for Autstrong(C) can be rephrased in terms of S:

Proposition 2.2. Let C be a nontrivial (i.e. nonzero) stabilizer code corresponding to a
subgroup S ⊂ Gn. Then σ ∈ Autstrong(C) if and only if σ(S) = S.

Proof. Notice that σ(S) fixes σ(C) pointwise. Hence if σ(S) = S, it follows that σ(C) ⊆ C.
But σ acts as an invertible linear map C → σ(C), which implies σ(C) = C. This proves the
“if” direction. Conversely, if σ(C) = C, then σ(C) is fixed pointwise by S. It is also fixed
pointwise by σ(S), so the same is true for the join 〈S, σ(S)〉 of the two subgroups. Because
C is nontrivial, 〈S, σ(S)〉 must be abelian and must not contain −I. Then by Proposition
1.8, 〈S, σ(S)〉 must have the same size as S, which implies σ(S) ⊆ S. But σ is bijective, so
we have equality, proving the reverse direction.

Since all σ ∈ Sn act as invertible linear maps on S, we can simplify the result of Proposi-
tion 2.2 to a form that is more suitable for actually computing strong automorphism groups.

Corollary 2.3. Let C be a nontrivial stabilizer code corresponding to a subgroup S ⊂ Gn.
Let S be generated by g1, . . . , gm. Then σ ∈ Autstrong(C) if and only if σ(gi) ∈ S for each i.

Example 2.4. Let S ⊂ G3 be generated by XZZ and ZXZ, so that S = {III,XZZ,ZXZ, Y Y I}.
Using the Kronecker product for matrices, we can calculate the projection onto C = C(S) as

P =
1

|S|
∑
s∈S

s =
1

4



1 0 1 0 1 0 −1 0
0 1 0 −1 0 −1 0 −1
1 0 1 0 1 0 −1 0
0 −1 0 1 0 1 0 1
1 0 1 0 1 0 −1 0
0 −1 0 1 0 1 0 1
−1 0 −1 0 −1 0 1 0
0 −1 0 1 0 1 0 1


,

so that C is spanned by 0L = 1
2

(000 + 010 + 100− 110) and 1L = 1
2

(001− 011− 101− 111).
Checking each of the permutations in S3, we obtain Autstrong(C) = {(1), (12)} ∼= Z2. Indeed,
these are also the only permutations σ that satisfy σ(S) = S, as is easily seen.

Remark 2.5. At this point, it is worth mentioning that the strong automorphism group of
a stabilizer code cannot be characterized by the parameters [[n, k, d]]. For instance, let S =
{IIII,XXXX,ZZZZ, Y Y Y Y } and S ′ = {IIII,XXZZ, Y Y XX,ZZY Y } be subgroups of
G4. Then the corresponding stabilizer codes C and C ′ both have parameters [[4, 2, 2]]. But
Autstrong(C) = S4, while Autstrong(C

′) = {(1), (12), (34), (12)(34)} ∼= Z2 × Z2.

11



2.1 Definitions and Basic Results 2 AUTOMORPHISM GROUPS OF CODES

It turns out that the notion of “strong automorphism group” does not produce many
interesting examples for stabilizer codes with small n; in particular, it seems that for most
codes, the strong automorphism group is usually small compared to the full symmetric
group. We will see more examples in Section 2.2, and we will give some reasons as to why
this general heuristic might be true in Section 3. Therefore we now introduce an extension
of the automorphism group concept.

Definition 2.6. Let C be a quantum code. We define the weak automorphism group of C
as

Autweak(C) = {σ ∈ Sn : σ(C) = γσ · C for some γσ ∈ Gn}. (9)

That is, σ(C) is “almost” C, where we allow a twist of the vectors in C by some element
γσ of the Pauli group (which is allowed to vary depending on σ, and is not necessarily
unique). We should check that Autweak(C) is actually a group. Indeed this is the case, since
we can view Autweak(C) as a semidirect product of sorts: if σ, τ ∈ Autweak(C) correspond to
γσ, γτ ∈ Gn, then

στ(C) = (σ(γτ ) · γσ) · C, (10)

as can be easily verified. Recall that the action of σ on Gn by permuting tensor factors is
the same as the matrix action by conjugation, g 7→MσgM

−1
σ . Hence στ ∈ Gn, since we can

set γστ = σ(γτ ) · γσ.
We now want to somewhat justify the labels “strong automorphism” and “weak automor-

phism”. In Proposition 2.2, we were able to give a characterization of strong automorphisms
in terms of the stabilizing subgroup of a stabilizer code. We can do the same for weak
automorphisms:

Proposition 2.7. Let C be a nontrivial stabilizer code corresponding to a subgroup S ⊂ Gn.
Then σ ∈ Autweak(C) if and only if σ(S) ⊂ S ∪ −S, where −S = {−s : s ∈ S}.

Corollary 2.8. Since σ is bijective, the following conditions are equivalent to the one in
Proposition 2.7:

1. If S is generated by g1, . . . , gm, then σ ∈ Autweak(C) if and only if σ(gi) or −σ(gi) is
in S for each i.

2. If π is the projection Gn → Gn/〈−I〉, then π(σ(S)) = π(S); that is, σ(S) and S are
the same subgroup up to sign.

Proof of Proposition 2.7. First, if σ ∈ Autweak(C), then σ(C) = γσ · C for some γσ ∈ Gn.
Because C and σ(C) have the same dimension, it follows from dimension considerations
(Proposition 1.8) that σ(S) is exactly the set of elements stabilizing σ(C). Similarly, because
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γσ is invertible, it follows that γσSγ
−1
σ is exactly the set of elements stabilizing σ(C), so

σ(S) = γσSγ
−1
σ . But γσ commutes or anti-commutes with everything in S, so σ(S) =

γσSγ
−1
σ ⊂ S ∪ −S.

Conversely, suppose σ(S) ⊂ S ∪ −S. σ is an isomorphism of abelian groups, and σ(S)
does not contain −I (otherwise σ−1(−I) = −I ∈ S, contradiction). Since S ∪ −S =
{±I,±a1,±a2, . . .} for an enumeration of the elements of S, by counting and the fact that
−I 6∈ σ(S), we see that plus or minus s is in σ(S) for any s ∈ S. In particular, if s1, . . . , sm
are an independent set of generators for S, we may find unique r1, . . . , rm ∈ S such that
σ(ri) equals plus or minus si. It follows that the {σ(ri)} generate σ(S).

Set ei = σ(ri)si, so ei ∈ {±1}. Renumber the r’s, s’s, and e’s so that e1 = . . . =
ea = 1, and ea+1 = . . . = em = −1. We would like to produce an element γ ∈ Gn

such that γ commutes with s1, . . . , sa, and anticommutes with sa+1, . . . , sm (if a = m,
then take γ = I, so we can assume a < m). It suffices to find a γ that commutes with
{s1, . . . , sa, sa+1sa+2, sa+1sa+3, . . . , sa+1sm}, and anticommutes with sa+1.

Recall the check matrix representation of elements in Gn (where we disregard elements
of the center 〈iI〉), so we may consider S as an m-dimensional subspace of F2n

2 . It follows
that the elements in S commuting with all of {s1, . . . , sa, sa+1sa+2, sa+1sa+3, . . . , sa+1sm}
form a subspace V of dimension 2n − (m − 1), which is the orthogonal complement with
respect to the symplectic bilinear form 4. Similarly, the elements in S commuting with all
of {s1, . . . , sa, sa+1, sa+1sa+2, sa+1sa+3, . . . , sa+1sm} form a subspace W of dimension 2n−m.
Therefore we may find some element in V but not in W , and the corresponding γ ∈ Gn

(taking the phase scalar factor to be 1) is the desired element.
It follows that γSγ−1 ∼= S is generated by

{s1, . . . , sa,−sa+1, . . . ,−sm} = {σ(r1), . . . , σ(rm)},

so that γSγ−1 = σ(S). γSγ−1 is the stabilizer for γ · C, and σ(S) is the stabilizer for σ(C),
so γ · C = σ(C). Setting γσ := γ, we have σ ∈ Autweak(C).

This somewhat justifies the “strong” and “weak” labels, since Propositions 2.2 and 2.7
show that a strong automorphism of C(S) sends S to itself, while a weak automorphism
sends S to itself but “disregarding signs”. Of course the strong automorphism group is a
subgroup of the weak automorphism group.

Example 2.9. Let S ⊂ G3 be generated by XXX, Y Y I, and ZXZ, so that
S = {III,XXX, Y Y I, ZXZ,−ZZX,−Y IY,XZZ,−IY Y }. Then Corollaries 2.3 and 2.8
show that the strong automorphism group of C = C(S) is {(1), (12)} ∼= Z2, while the weak
automorphism group is all of S3.

This example shows that this weaker notion of automorphism can enlarge the strong
automorphism group, and we will see in some later examples that Autweak(C) can be quite

13
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a bit larger than Autstrong(C) for certain stabilizer codes C. This example also shows that
Autstrong(C) is not necessarily normal in Autweak(C). So we may pose the following (some-
what vague) question:

Question 2.10. Can we describe the relationship between Autstrong(C) and Autweak(C) for
a given stabilizer code C = C(S)?

We extend the notion of an automorphism group one last time. For this, we need to
introduce the (one-qubit) Clifford group L1, following the terminology of [1] and [2].

Definition 2.11. The (one-qubit) Clifford group L1 is the subgroup of the normalizer of

G1 in U(2) that contains entries from Q
(

1+i√
2

)
= Q(e

πi
4 ). It is generated by G1, H =

1√
2

[
1 1
1 −1

]
, and S =

[
1 0
0 i

]
.

In the terminology of quantum logic gates, H is the Hadamard gate, and S is the phase
shift gate where the shift is by π

4
. Note that the conjugation actions of H and S on X, Y ,

and Z are as follows:

HXH−1 = Z SXS−1 = Y
HZH−1 = X SZS−1 = Z
HYH−1 = −Y SY S−1 = −X

.

We can extend the action of L1 on G1 to n qubits as follows, which gives us our second
weakening of the strong automorphism group:

Definition 2.12. We define the n-qubit diagonal Clifford group Ln as

Ln = {A1 ⊗ . . .⊗ An : Ai ∈ L1}. (11)

Ln has a natural conjugation action on Gn, which motivates the following definition.

Definition 2.13. Let C be a stabilizer code corresponding to the subgroup S ⊂ Gn. We
define the Clifford-twisted automorphism group of C as

AutClif(C) = {σ ∈ Sn : σ(S) = λσSλ
−1
σ for some λσ ∈ Ln}. (12)

Since Ln contains Gn, we have the chain of inclusions AutClif(C) ⊇ Autweak(C) ⊇
Autstrong(C) for a stabilizer code C. We are somewhat justified in calling AutClif(C) an
automorphism group: it is a group for the same reason that Autweak(C) is a group, and
because the elements of Ln act as automorphisms of Gn, it is not hard to show that if
σ ∈ AutClif(C), then C and σ(C) have the same [[n, k, d]] parameters.

To aid computation, we make some useful observations involving Definition 2.13. First, if
g1, . . . , gm generate S, then for σ to be in AutClif(C) it suffices to verify that σ(gi) ∈ λσSλ−1σ

14
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for each gi. This can be further weakened: it suffices that plus or minus σ(gi) is in λσSλ
−1
σ ,

since if we are only off by a sign, we can simultaneously correct for that by conjugating by
an appropriate element of Gn, as in the proof of Proposition 2.7. Finally, because we can
disregard signs, we can interpret the action of L1 on G1 (or each tensor factor of Gn) as
S3 acting on the non-identity Pauli matrices. For instance, the above table shows that H
induces the permutation (XZ) and S induces the permutation (XY ) on the set {X, Y, Z},
and various combinations of H and S induce the other permutations of S3. So we can
rephrase Definition 2.13 in a more verbose, but more intuitive, manner:

Corollary 2.14. Let C be a stabilizer code corresponding to the subgroup S ⊂ Gn, and
consider the componentwise action of (S3)

n := S3 × . . .× S3︸ ︷︷ ︸
n times

on elements of Gn (i.e. on each

tensor factor, S3 acts on the three non-identity Pauli matrices). Then σ ∈ AutClif(C) if and
only if there is some ρσ ∈ (S3)

n such that for each generator gi of S, ρσ · (σ(gi)) ∈ S ∪ −S.

Note that we use · to emphasize the fact that σ and ρσ have very different actions: σ
permutes the tensor factors in each element, while ρσ permutes X, Y , and Z in each tensor
factor.

Let us use Corollary 2.14 in an example. Recall from Remark 2.5 that if C is the
stabilizer code corresponding to the subgroup S ⊂ G4 generated by XXZZ and Y Y XX,
then Autstrong(C) = {(1), (12), (34), (12)(34)} ∼= Z2 × Z2. Using Corollary 2.8, it is easy to
see that Autweak(C) is the same group. However, we now show that AutClif(C) is the full S4.

Example 2.15. We want to show that AutClif(C) = S4, and we already know (12) ∈
AutClif(C), so it suffices to show that (1234) ∈ AutClif(C). Applying this permutation to
the generators XXZZ and Y Y XX gives ZXXZ and XY Y X. The latter two elements
can be obtained from the former two by applying the permutation (XZY ) in the first tensor
factor, and (XY Z) in the third. Hence (1234) ∈ AutClif(C).

2.2 Examples of Automorphism Groups

In this section we give many examples of Autstrong(C),Autweak(C), and AutClif(C) for various
small stabilizer codes C with large distance. Most codes will be taken from [6]. The majority
of these examples were calculated by hand and then verified using a SAGE program (see
Appendix A). These hand calculations are somewhat tedious ad hoc processes, so we will
only try to give a general outline of how they were done. We will also make some observa-
tions about the more noteworthy automorphism groups. However, we should again remark
that the automorphism groups of a stabilizer code cannot be completely determined by the
parameters [[n, k, d]], so these examples should be taken as interesting specific cases rather
than showcasing a general phenomenon.
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2.2.1 A [[5, 1, 3]] code

Recall from Example 1.14 that the subgroup S ⊂ G5 generated by

XZZXI

IXZZX

XIXZZ

ZXIXZ

gives a [[5, 1, 3]] stabilizer code C, and it is the smallest able to correct one error on any qubit
in terms of the number n of physical qubits. We find that Autstrong(C) = Autweak(C) =
〈(12345), (25)(34)〉 ∼= D10, the dihedral group of order 10. One could compute these groups
by writing out the elements of S in full:

XZZXI XY IY X ZIZY Y ZY Y ZI

IXZZX IZY Y Z Y XXY I Y IY XX

XIXZZ Y Y ZIZ IY XXY ZZXIX

ZXIXZ XXY IY Y ZIZY IIIII

Then it is clear that Autstrong(C) = Autweak(C), since all of the elements have the same phase
+1, and moreover any strong automorphism must take the four generators of S to a cyclic per-
mutation of XZZXI. It should follow pretty easily that Autstrong(C) = 〈(12345), (25)(34)〉.
We call stabilizer codes C with (12 . . . n) ∈ Autstrong(C) (or more generally, any n-cycle in
place of (12 . . . n)) cyclic, and they are of particular interest (see [4]).

It is much harder to come up with a systematic approach for calculating the Clifford-
twisted automorphism group, so we must resort to “guessing” elements in AutClif(C). It is
a good idea to begin with testing (12) and (12 . . . n), since those two permutations generate
Sn. In this case, we already have (12345) ∈ AutClif(C), so we try (12). This permutation
sends the generators to

ZXZXI

XIZZX

IXXZZ

XZIXZ,

and twisting these by the permutations (Y Z), (Y Z), (XZ), (XY ), and (XZ) in the respec-
tive tensor factors gives

Y XXY I

XIXZZ

IXZZX

XY IY X,
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all of which are in S. Hence (12) ∈ AutClif(C)⇒ AutClif(C) = S5.

2.2.2 A [[6, 0, 4]] code

Recall the 0L and 1L states from Example 1.14, which form a basis for the [[5, 1, 3]] code
mentioned above. We may consider the state 0 ⊗ 0L + 1 ⊗ 1L ∈ C26 , which defines a
(degenerate) [[6, 0, 4]] code C. This “code” is important as an example of a maximally
entangled state, following the terminology of [7].

It is not hard to check that the stabilizing subgroup S ⊂ G6 corresponding to C is
generated by

IXZZXI

IIXZZX

IXIXZZ

IZXIXZ

XXXXXX

ZZZZZZ.

It turns out that while Autstrong(C) is again 〈(23456), (36)(45)〉 ∼= D10, Autweak(C) is in
fact 〈(23456), (135)(264)〉 ∼= PSL(2, 5) ∼= A5. For instance, (135)(264) sends IXZZXI to
XZIIZX, which is not in S, but rather in −S.

Note that this is another example where Autstrong(C) is not normal in Autweak(C).
To calculate these groups, we adopt the procedure from Section 2.2.1 and write out all

the 26−0 = 64 elements of S. Since any permutation fixes XXXXXX and ZZZZZZ, we
can focus on the first four generators of S. It is a good strategy to do casework on the image
of the first tensor factor, since we would then need to find four elements in S with I’s in that
slot (perhaps with the proper sign, depending on whether we are calculating the strong or
weak automorphism group). We also use the constraint that the first four generators must
be sent to elements of S (or −S) that have 2 I’s, 2 X’s, and 2 Z’s as tensor factors. All of
these types of criteria—location of the I’s in the tensor product, weights of elements, and
the types of Pauli matrices used in each tensor product—are highly useful when performing
hand computations.

Finally, we claim that AutClif(C) = S6. First, we check that (12) ∈ AutClif(C): it sends
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the generators to

XIZZXI

IIXZZX

XIIXZZ

ZIXIXZ

XXXXXX

ZZZZZZ,

and twisting these by the permutations (XY ), (XY ), (XZ), (Y Z), (Y Z) and (XZ) in the
respective tensor factors gives

Y IXY XI

IIZY Y Z

Y IIXY X

ZIZIXX

Y Y ZXXZ

ZZXY Y X,

all of which are in S. It remains to check that (123456) ∈ AutClif(C). This sends the
generators to

IIXZZX

XIIXZZ

ZIXIXZ

ZIZXIX

XXXXXX

ZZZZZZ,

and twisting these by the permutations (XY ), (XY ), (XZ), (Y Z), (Y Z) and (XZ) in the
respective tensor factors gives

IIZY Y Z

Y IIXY X

ZIZIXX

ZIXXIZ

Y Y ZXXZ

ZZXY Y X,

all of which are in S. Again, for this computation, it is important to exploit the position of
I’s as tensor factors, since conjugation by elements of L6 cannot change I.
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2.2.3 The [[7, 1, 3]] Steane code

The [[7, 1, 3]] Steane code C corresponds to a subgroup S ⊂ G7 that has generators given by

IIIXXXX

IXXIIXX

XIXIXIX

IIIZZZZ

IZZIIZZ

ZIZIZIZ.

C is derived from the classical [7, 4] Hamming code—this is apparent if one writes out the
check matrix representations of these generators, and compares that matrix to the parity-
check matrix of the Hamming code. It is of primary interest as an example of a CSS code
(see Section 10.4.2 of [8] for the full details). Since it is derived from the Hamming code,
which has an automorphism group of PGL(3, 2) ∼= PSL(2, 7), it should be of no surprise that
Autstrong(C) = Autweak(C) = 〈(46)(57), (124)(365)〉 ∼= PGL(3, 2). In general, it is at least
true that the strong automorphism group of a CSS code is isomorphic to the automorphism
group of the classical code it is derived from.

By writing out all of the 27−1 = 64 elements of S, one can check that AutClif(C) is also
PGL(3, 2). This provides a nontrivial example where all three types of automorphism group
are equal.

2.2.4 An [[8, 3, 3]] code

The tables at [6] give us the generators for the stabilizing subgroup S ⊂ G8 of an [[8, 3, 3]]
code C:

XIZIY ZXY

IXZZY XY I

IZXIY Y ZX

IZIY ZXXY

ZZZZZZZZ.

This code is significant because it is the smallest-sized code encoding 3 logical qubits that
can correct any single-qubit error. We can calculate that

Autstrong(C) = {(1), (12)(35)(68)(47), (13)(25)(48)(67), (14)(27)(38)(56), (15)(23)(46)(78),

(16)(28)(37)(45), (17)(24)(36)(58), (18)(26)(34)(57)} ∼= Z2 × Z2 × Z2,
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Autweak(C) = Autstrong(C) o 〈(2453876)〉 ∼= (Z2 × Z2 × Z2) o Z7.

We may alternatively identify Autweak(C) as AGL(1, 8), the 1-dimensional affine general
linear group over F8, which acts sharply 2-transitively on 8 points. This is a group of order
56 with a unique Sylow 2-subgroup isomorphic to Z2 × Z2 × Z2.

To calculate these groups, one can use the following remarkable description of the ele-
ments of S: each of the 28−3−4 = 28 elements in S that are not IIIIIIII, XXXXXXXX,
ZZZZZZZZ, or Y Y Y Y Y Y Y Y , contain exactly 2 I’s, 2 X’s, 2 Z’s, and 2 Y ’s as tensor
factors. Moreover, for any pair of integers 1 ≤ i < j ≤ 8, exactly one of those 28 elements
has I’s as tensor factors in slots i and j.

To calculate AutClif(C), we use the fact that AutClif(C) ⊇ Autweak(C) is 2-transitive, so
it suffices to find the stabilizer of slots 1 and 2. A tedious check by casework (using the
positions of I tensor factors, as well as the above observations about S, as our guide) shows
that this stabilizer is of order 3 and generated by (367)(458). Hence AutClif(C) is a group of
order 56 · 3 = 168. We may identify AutClif(C) as the 1-dimensional affine semilinear group
AΓL(1, 8), which is a semidirect product AGL(1, 8) o Aut(F8).

2.2.5 An [[8, 2, 3]] code

It turns out that the [[8, 3, 3]] code mentioned in 2.2.4 has an [[8, 2, 3]] subcode C, which is
the smallest-sized code encoding 2 logical qubits that can correct any single-qubit error. Its
stabilizing subgroup S is generated by

XIZIY ZXY

IXZZY XY I

IZXIY Y ZX

IZZY ZXZZ

IIZIIIY X

ZZZZZZZZ.

Note that the product of the fourth and fifth generators of S give the fourth generator of
the aforementioned [[8, 3, 3]] code.

Now, any element of Autstrong(C) or Autstrong(C) sends the generator IIZIIIY X to
another weight-3 element in S (up to sign). By analyzing the weight-3 elements in S (there
are only 8 of them), we can conclude that the only nontrivial element in both Autstrong(C)
and Autweak(C) is (13)(25)(48)(67). So although the strong automorphism group of the
above [[8, 3, 3]] code was sharply 1-transitive, and the weak automorphism group of the same
code was sharply 2-transitive, neither Autstrong(C) ∼= Z2 nor Autweak(C) = Autstrong(C) are
transitive.
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2.2.6 A [[10, 0, 4]] code

Consider the following generators of a stabilizing subgroup S ⊂ G10:

XIIZXZXZII

IXIIZXZXZI

IIXIIZXZXZ

ZIIXIIZXZX

XZIIXIIZXZ

ZXZIIXIIZX

XZXZIIXIIZ

ZXZXZIIXII

IZXZXZIIXI

IIZXZXZIIX

These ten elements are cyclic permutations of each other. It can be checked that S
determines a degenerate [[10, 0, 4]] code C, and from [6] we see that 4 is the best possible
distance for a [[10, 0]] code. Note that this is not the same [[10, 0, 4]] code given at [6].

Now, we will later see (Theorems 3.3 and 3.5) that there are no nondegenerate 12-qubit
(resp. 11-qubit) stabilizer codes with strong or weak automorphism group M12 (resp. M11).
This suggests that the Clifford-twisted automorphism group might be the “correct” auto-
morphism group to investigate, if we are trying to find some connections between stabilizer
codes and the small Mathieu groups. This code provides some evidence of such a connection:
we have

AutClif(C) = 〈(1 2 3 4 5 6 7 8 9 10), (8 9)(4 10)(5 6)〉 ∼= M10.2,

a 3-transitive group of order 1440. This group is also isomorphic to the 2-dimensional
projective semilinear group PΓL(2, 9), as well as to the automorphism group of the unique
(up to isomorphism) (3, 4, 10) Steiner system.

It is evident that (1 2 3 4 5 6 7 8 9 10) ∈ AutClif(C), since it is even a strong automorphism.
To see that (8 9)(4 10)(5 6) ∈ AutClif(C), one applies this permutation to the above ten
generators and then twists by (XZ) in the 5th, 6th, 8th, and 9th tensor factors (in the
other tensor factors, we do nothing). Recall from the discussion surrounding Definition 2.11
that this (XZ) twist is, up to sign, the Hadamard gate. The resulting elements of G10

will all be in S. Since M10.2 is a maximal subgroup of S10, it remains to show that some
transposition, say (13), is not in AutClif(C). This is not too hard to do using the program in
Appendix A: one way is to apply (13) to the first and third generators listed above (so they
become IIXZXZXZII and XIIIIZXZXZ, respectively), and show that the resulting
two elements of G10 cannot be simultaneously twisted into elements of S.
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The general heuristic for the construction of this code is as follows: somehow the code
should be related to the unique (3, 4, 10) Steiner system, since as mentioned above M10.2 is
the automorphism group of that Steiner system. From [11] we obtain a description of the
blocks of such a system, and we place I’s in tensor factors corresponding to ten of those
blocks, which will be cyclic permutations of each other. In some way, this makes sense to
try, since the identity matrices act as “distinguished elements”: X’s, Y ’s, and Z’s can all be
twisted into each other, but that is not true with I’s. The rest of the construction consists of
playing around with the remaining six tensor factors and eventually coming upon the “right
ones”.

As a final remark, the Clifford-twisted automorphism group of this code is indeed the
most interesting: both the strong and weak automorphism groups of C are
〈(1 2 3 4 5 6 7 8 9 10), (2 10)(3 9)(4 8)(5 7)〉 ∼= D20.

2.2.7 An [[11, 1, 5]] code

Table 8.5 of [4] gives the generators for the stabilizing subgroup S of an [[11, 1, 5]] code C as
follows:

ZZZZZZIIIII

XXXXXXIIIII

IIIZXY Y Y Y XZ

IIIXY ZZZZY X

ZY XIIIZY XII

XZY IIIXZY II

IIIZY XXY ZII

IIIXZY ZXY II

ZXY IIIZZZXY

Y ZXIIIY Y Y ZX

This code is significant because it is the smallest-sized code that can correct arbitrary errors
on any two qubits (see [6]). S is slightly too large to analyze using the aforementioned
techniques, or via brute-force using the program in Appendix A; however, we strongly suspect
that both Autstrong(C) and Autweak(C) are trivial.

Question 2.16. Are the strong and weak automorphism groups of C trivial?

22



3 STABILIZER CODES WITH HIGHLY TRANSITIVE AUTOMORPHISM GROUPS

3 Stabilizer Codes with Highly Transitive Automor-

phism Groups

In this section, we try to investigate the general question of “how symmetric can a good
stabilizer code be?” We will focus on stabilizer codes that have distance at least 3 (so they
can at least correct one error on any qubit, hence “good”), and we will try to find those
codes with multiply transitive strong and weak automorphism groups (hence “symmetric”).

The examples in Section 2.2 suggest that in general, the strong and weak automorphism
groups of a good code cannot be “too symmetric”. For instance, the highest degree of
transitivity we observed was 2-transitive, such as in the [[7, 1, 3]] Steane code with strong
and weak automorphism group PGL(3, 2) (Section 2.2.3), and in a [[8, 3, 3]] code with weak
automorphism group AGL(1, 8) (Section 2.2.4). We believe that this is a good heuristic, and
we now provide some results supporting this point of view.

Theorem 3.1. An [[n, k, d]] stabilizer code C with Sn or An as its strong or weak automor-
phism group has d ≤ 2.

We make a useful definition:

Definition 3.2. Let T be a subset of En. Then the complexity of T is the number of
different Pauli matrices (I, X, Y , or Z) that appear as tensor factors in elements of T
(so the complexity is an integer in {1, 2, 3, 4}). We define the complexity of an element
similarly. For example, the subset T = {IXX, Y Y Z} has complexity 4, even though both
elements IXX and Y Y Z have complexity 2.

Proof of Theorem 3.1. Let C be the stabilizer code in question with parameters [[n, k, d]],
and let S ⊂ Gn be its stabilizing subgroup. Note that any stabilizer code with distance at
least 3 must be able to correct an arbitrary error on a single qubit, which means it must be
at least 5 physical qubits large (see, for example, the quantum Hamming bound discussed
in Section 10.3.4 of [8]). So we may assume that n ≥ 5.

We prove the theorem in the case Autweak(C) ∼= Sn or An, and the proof for Autstrong(C)
is essentially the same.

Now, S has complexity 1, 2, 3, or 4. If S has complexity 1, then it is the trivial subgroup,
so we can disregard this case. If S has complexity 2, then without loss of generality every
element s ∈ S is a tensor product of I’s and X’s. Then XI . . . I is in the normalizer N(S),
so either it is in S or d = 1. The same applies for IXI . . . I, IIXI . . . I, etc., so either S
contains them all or d = 1. In the former case, S will have size 2n, so that k = 0. In this
case, d still equals 1, applying the distance convention for zero-dimensional stabilizer codes
as discussed in Remark 1.13.

If S has complexity 3, then without loss of generality, every element s ∈ S is a tensor
product of I’s, X’s, and Z’s. Suppose s1 ∈ S has an X in slot i (the ith tensor factor) and
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s2 ∈ S has a Z in slot j. Then we may choose some permutation σ ∈ Autweak(C), which is
either Sn or An, such that σ(i) = j. So plus or minus σ(s1) is in S, and taking the positive
sign (without loss of generality), we see that σ(s1)s2 ∈ S. But this element has a Y in slot
j, contradicting the complexity of S.

If S has complexity 4, we first claim that no element in S can have complexity 3 or 4. If
s ∈ S had complexity 3 or 4, then it has I, X, and Z as tensor factors somewhere, say
s = . . . I . . . X . . . Z . . . (without loss of generality, since it will be apparent that it does
not matter where these tensor factors are located). Then applying an appropriate 3-cycle
σ ∈ An ⊆ Autweak(C), we get σ(s) = . . . Z . . . I . . . X . . ., so that plus or minus σ(s) is in S.
In either case, the point is that σ(s) and s do not commute, a contradiction.

So elements in S have complexity at most 2. Suppose we had some complexity 2 element
s, which is, without loss of generality, a tensor product of I’s and X’s only, with at least 1
copy of each. Let s have an I in slot i and an X in slot j. Now, because we assume n ≥ 5,
there are at least 3 more slots, so either I or X appears in the remaining slots at least twice.
Without loss of generality, suppose I appears in slots k and l of s, where i, j, k, l are pairwise
distinct. Consider the permutation σ = (ij)(kl) ∈ An ⊆ Autweak(C), so that σ(s) has the
effect of only switching the I in slot i and the X in the slot j (the I’s in slots k and l are
invisibly switched). Then plus or minus σ(s) is in S, so taking the positive sign, we see that
t := σ(s)s ∈ S has an I in every slot of the tensor product, except in slots i and j, where it
has X’s.

Then because n is at least 5, by applying elements in Autweak(C), it follows that any
tensor product of I’s and exactly two X’s is in S, up to sign. Then the elements
{±XXI . . . I,±IXXI . . . I, . . . ,±I . . . IXX} are independent in S, so S has size at least
2n−1. But the complexity 4 hypothesis means that S contains some term with a Y or Z,
and that element is certainly independent from the above set, so S must have size exactly
2n. So k = 0, and by the distance convention for zero-dimensional stabilizer codes, d ≤ 2.

The only case we have not considered is where all elements in S have complexity 1. Then
S is a subgroup contained in {±I . . . I,±X . . .X,±Z . . . Z,±Y . . . Y }, and XXI . . . I is a
weight 2 element in N(S)− S, so d = 2.

The classification of finite simple groups tells us that the only k-transitive groups for
k ≥ 6 are Sn and An for large enough n. We also know that the only 5-transitive groups
are the Mathieu groups M24 and M12, and the only 4-transitive groups are M23 and M11.
Therefore it makes sense to discuss these groups next. We will now deal with the small
Mathieu groups, starting with M12.

Theorem 3.3. There is no k ≥ 1 stabilizer code with ambient space C212 that has strong or
weak automorphism group M12.

Proof. We prove the statement in the Autstrong case, since the Autweak case only gives us
increased freedom to make sign changes in elements of the stabilizer group, which doesn’t
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make a difference. In particular, in all that follows, we will mean “equal up to a sign ±”
when we say “equal”, unless stated (we will only need to deal with signs in a few places).
The only fact about M12 we will need is that it is 5-transitive as a permutation group on 12
points.

Let C be a stabilizer code (encoding at least 1 logical qubit) corresponding to the stabilizer
subgroup S ⊂ E12 with Autstrong(C) ⊇M12. We prove that this inclusion must be strict.

Disregarding the trivial case, the complexity of S must be 2, 3, or 4. First, if the
complexity of S is 2, then without loss of generality, all elements are tensor products of
X’s and I’s. Pick some s ∈ S not equal to I or X . . .X (if there is no such element, then
Autstrong(C) ∼= S12), so that s has at most 6 X’s as tensor factors. Note that we could change
the X’s and I’s and the argument still works. We can assume without harm that the X’s
are located consecutively in the first slots, so s is one of the following, up to sign:

{XI . . . I,XXI . . . I,XXXI . . . I,XXXXI . . . I,XXXXXI . . . I,XXXXXXIIIIII}.

It does not actually matter where the X’s are located, since the argument can be easily
modified for any position of the X’s.

Because M12 is 5-transitive, we may produce one of the elements in the below list by
applying a permutation from Autstrong(C) to s. The dots mean that we do not exactly know
the order of the remaining tensor factors, since we may only specify the images of 5 points
(qubits).

{IXI . . . , XIXI . . . , XXIXI . . . , XXXIX . . . , XXXXI . . . , XXXXI . . .}.

Let s′ ∈ S be the corresponding element to s. Notice that in each case, ss′ is an element
with weight 2, except in the last case, where ss′ could have weight 4. But in the last case
we can just repeat this procedure to produce some element of weight 2. Let us call this
process reduction to a weight 2 element, since we will want to refer to it later. We
have essentially shown that if S contains an element of weight at most 6, then it contains an
element of weight 2.

So S contains some element of weight 2. By 5-transitivity of Autstrong(C) ⊇ M12, S
contains all tensor products of I’s and X’s of weight 2, of which the 11 elements
{XXI . . . I, IXXI . . . I, . . . , I . . . IXX} are independent. Since k ≥ 1, S is generated by
exactly these elements. Now, notice that if we apply the appropriate element in the 5-
transitive group Autstrong to IXXI . . . I, we get XIXI . . . I ∈ S with the same sign as
IXXI . . . I. Multiplying these, we see that +XXI . . . I ∈ S (with the positive sign added
for emphasis). Then XIXI . . . I ∈ S, the product of the first two generators, has the same
sign as IXXI . . . I ∈ S, so the transposition (12) is in Autstrong (it fixes the rest of the
generators). Therefore Autstrong(C) 6= M12, since M12 does not contain any transposition.
This finishes the discussion of the complexity 2 case.

As in the proof regarding Sn or An automorphism group, transitivity of Autstrong(C)
shows that S cannot have complexity 3.
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It remains to discuss the complexity 4 case. First, we show that there cannot be
an element in S with complexity 2. This argument essentially follows the above work
where S has complexity 2: given an element s ∈ S with complexity 2, we may reduce
to a weight 2 element t ∈ S that only has I’s and one other Pauli matrix as tensor fac-
tors (say, X). Then the same argument shows that S would have to be generated by
{XXI . . . I, IXXI . . . I, . . . , I . . . IXX} (by the k ≥ 1 hypothesis). This is a contradiction
to S being complexity 4.

So there is an element in S with complexity at least 3 (if all elements in S had complexity
1, then Autstrong(C) ∼= S12 6= M12). We claim that there is in fact an element in S with
complexity 4. Suppose the first three slots of s ∈ S are XIZ (as usual, it doesn’t matter
what order they are in, what slots they are in, or what Pauli matrices they are, as long as
they are pairwise distinct). There are four possibilities:

1. s, interpreted as a string of Pauli matrices, begins XIZI . . .. By 5-transitivity of
Autstrong(C) there is some s′ ∈ S that begins ZXII . . .. Then their product ss′ begins
Y XZI . . ., the desired element of complexity 4.

2. s begins XIZX . . .. By 5-transitivity of Autstrong(C) there is some s′ ∈ S that begins
IZXX . . .. Then their product ss′ begins XZY I . . ., the desired element of complexity
4.

3. s begins XIZZ . . .. By 5-transitivity of Autstrong(C) there is some s′ ∈ S that begins
IZXZ . . .. Then their product ss′ begins XZY I . . ., the desired element of complexity
4.

4. s begins XIZY . . .. This already has complexity 4.

Therefore we may assume without loss of generality that s has complexity 4, and that the
first four tensor factors of s are XZY I.

Now, we look at elements of N(S)− S. By the bounds found at [6], N(S)− S contains
an element of weight at most 6. We turn to looking at the possibilities case by case:

1. Weight 1:

(a) XI . . . I 6∈ N(S) because it does not commute with ZIXY . . .. A similar argument
shows that Y I . . . I, ZI . . . I 6∈ N(S).

2. Weight 2:

(a) XXI . . . I 6∈ N(S) because it does not commute with ZIXY . . .. A similar argu-
ment shows that Y Y I . . . I, ZZI . . . I 6∈ N(S).

(b) XZI . . . I 6∈ N(S) because it does not commute with ZIXY . . .. A similar argu-
ment shows that ZXI . . . I,XY I . . . I, Y XI . . . I, Y ZI . . . I, ZY I . . . I 6∈ N(S).
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3. Weights 3 through 6: it is easily seen that if g ∈ N(S), then σ(g) ∈ N(σ(S)) = N(S)
for σ ∈ Autstrong(C) (the same argument works for Autweak(C), since in that case σ(S)
only differs from S by signs). Then if g ∈ N(S) has weight 3, 4, 5, or 6, we may reduce
to an element g′ ∈ N(S) of weight 2. This falls into the above case.

In all cases, we get a contradiction, so we are done.

Remark 3.4. This method fails with M23 and M24. We know that there is a [[23, 1, 7]] sta-
bilizer code that at least has strong automorphism group M23; this is the CSS code generated
from the classical [23, 12, 7] Golay code (see section 7.15.4 of [9]. There should also be a
[[24, 0, 8]] “code” that is the CSS code generated from the classical [24, 12, 8] extended Golay
code.

One can use the same method to show the following:

Theorem 3.5. There is no k ≥ 1 stabilizer code with ambient space C211 that has strong or
weak automorphism group M11.

The main difference is that reduction to a weight 2 element is now only valid for elements
of weight at most 5. But luckily this does not pose a problem: b11

2
c = 5, so the arguments for

complexity 2 elements still hold, and the bounds at [6] show that N(S)−S for any stabilizing
subgroup S ⊂ G11 contains an element of weight at most 5, so the last casework step can be
repeated. Every other step in the proof of Theorem 3.3 can be done using only 4-transitivity.

We end this paper by presenting some questions that naturally follow from topics dis-
cussed above.

Question 3.6. Are Theorems 3.3 and 3.5 true if the k ≥ 1 hypothesis is dropped?

Question 3.7. Describe stabilizer codes C with AutClif(C) ∼= Sn. Replace Sn by An and the
Mathieu groups, if possible.

Question 3.8. Describe stabilizer codes C with 3-transitive Autstrong(C) or Autweak(C).
Replace “3-transitive” by “2-transitive”, “transitive”, and “cyclic” if possible.

Question 3.9. Can a stabilizer code with trivial strong (resp. weak) automorphism group be
arbitrarily good? That is, are there stabilizer codes with trivial strong (resp. weak) automor-
phism groups having arbitrarily large distance? Replace “trivial” with “cyclic” if possible.
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A SAGE CODE FOR COMPUTING AUTOMORPHISM GROUPS

Appendix A SAGE Code for Computing Automorphism

Groups

Here is some SAGE code using a brute-force method to calculate the strong and weak
automorphism groups of a stabilizer code. Thanks to Dr. Daniel Bump for his major
assistance in writing this program.

"""

SAGE Code for looking for automorphisms of stabilizer quantum error

correcting codes.

"""

# For reference, x,y,z = Pauli matrices

# h,s = Hadamard and Phase gates.

X = Matrix([[0,1],[1,0]])

Y = Matrix([[0,-i],[i,0]])

Z = Matrix([[1,0],[0,-1]])

H = Matrix([[1,1],[1,-1]])

S = Matrix([[1,0],[0,i]])

# The Pauli error group is defined by generators and relations:

FG.<x,y,z,j> = FreeGroup()

PE = FG/{j^4,x^2,y^2,z^2,x*y/x/y*j^2,y*z/y/z*j^2,z*x/z/x*j^2,x*j/x/j,y*j/y/j,

z*j/z/j,x*y/j/z,y*x*j/z,y*z/j/x,z*y*j/x,z*x/j/y,x*z*j/y}

PE.inject_variables()

def ca(a, split=False):

"""

Canonical form for the Pauli Error group elements

"""

for b in [PE.one(),x,y,z]:

for k in [PE.one(),j,j^2,j^3]:

if a == k*b:

if split:

return [k,b]

else:

return k*b

return a
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def emul(A,B,debug=False):

"""

Multiplication for Pauli error group elements in canonical form

"""

a0 = A[0]

b0 = B[0]

r0 = a0*b0

rt = []

for [t,u] in zip(A[1:],B[1:]):

[p,q]=ca(t*u,split=True)

r0 *= p

if debug:

print (t,u,p)

rt.append(q)

ret = [ca(r0)]

for t in rt:

ret.append(t)

return ret

def eprod(M,n):

"""

M is a subset of the stabilizer group S

Returns the product of the elements of M.

"""

ret = tuple((n+1)*[PE.one()])

for m in M:

ret = emul(ret,m)

return list(ret)

def unpack(st):

"""

Pauli error group elements may be represented by strings

and unpacked by this function.

sage: unpack("XYZZY")

(1, x, y, z, z, y)

"""

ret = [PE.one()]

for c in st:
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if c == "X":

ret.append(x)

elif c == "Y":

ret.append(y)

elif c == "Z":

ret.append(z)

elif c == "I":

ret.append(PE.one())

return tuple(ret)

def pack(w):

ret = ""

for t in w[1:]:

if t==PE.one():

ret += "I"

elif t==x:

ret += "X"

elif t==y:

ret += "Y"

elif t==z:

ret += "Z"

return ret

def Stabilizer(S):

"""

Return the stabilizer group generated by a set of generators

of the Pauli error group in string notation. The generators

must commute and the generated group may not contain -I.

"""

n = len(S[0])

return [eprod(M,n) for M in Set(unpack(s) for s in S).subsets()]

def GenToArray(S):

"""

Takes an array of generator strings and returns the same Pauli elements

in standard form.

"""

return [list(unpack(s)) for s in S]

StabTest = ["XXX", "YYI", "ZXZ"]
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Stab513 = ["XZZXI","IXZZX","XIXZZ","ZXIXZ"]

Stab604 = ["IXZZXI","IIXZZX","IXIXZZ","IZXIXZ","XXXXXX","ZZZZZZ"]

Stab713 = ["IIIXXXX", "IXXIIXX", "XIXIXIX", "IIIZZZZ", "IZZIIZZ", "ZIZIZIZ"]

Stab833 = ["XIZIYZXY", "IXZZYXYI", "IZXIYYZX", "IZIYZXXY", "ZZZZZZZZ"]

Stab823 = ["XIZIYZXY", "IXZZYXYI", "IZXIYYZX", "IZZYZXZZ", "IIZIIIYX", "ZZZZZZZZ"]

Stab933 = ["XIZIYZXYI", "IXZZYXYII", "IZXIYYZXI", "IZIYZXXYI", "ZZZZZZZZI",

"IIIIIIIIX"]

Stab1004 = ["XIIZXZXZII", "IXIIZXZXZI", "IIXIIZXZXZ", "ZIIXIIZXZX", "XZIIXIIZXZ",

"ZXZIIXIIZX", "XZXZIIXIIZ", "ZXZXZIIXII", "IZXZXZIIXI", "IIZXZXZIIX"]

Stab1115 = ["ZZZZZZIIIII", "XXXXXXIIIII", "IIIZXYYYYXZ", "IIIXYZZZZYX",

"ZYXIIIZYXII", "XZYIIIXZYII", "IIIZYXXYZII", "IIIXZYZXYII", "ZXYIIIZZZXY",

"YZXIIIYYYZX"]

"""

StabTest should have Autweak=S3 and Autstrong=S2. Try using ListPerms function.

"""

def ListPerms(Gen):

"""

Prints out permutations in weak and strong automorphism groups, as well as

the sizes of the groups.

Weak automorphism group is calculated first to improve efficiency.

Input: List of strings with generators for stabilizing subgroup; e.g. Stab513

"""

genList = GenToArray(Gen)

C = Stabilizer(Gen)

short_gen = [w[1:] for w in genList]

short_code = [w[1:] for w in C]

size = len(short_code[0])

weakgroup = []

stronggroup = []

for p in Permutations(size):

check = true

for w in short_gen:

if check == true:

check = [w[p[i]-1] for i in range(size)] in short_code

else:

break

if check == true:

print(p)
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weakgroup.append(p)

print("Size of weak automorphism group: " + str(len(weakgroup)))

for p in weakgroup:

check = true

for w in genList:

if check == true:

check = ([w[0]]+[w[p[i]] for i in range(size)]) in C

else:

break

if check == true:

print(p)

stronggroup.append(p)

print("Size of strong automorphism group: " + str(len(stronggroup)))
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